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Feynman integrals as iterated integrals (1)

• Logarithm and dilogarithm are first examples of iterated integrals 
with special ``d-log`` integration kernels

dt

t
= d log t

�dt

1� t
= d log(1� t)

• these are called harmonic polylogarithms (HPL)

• shuffle product algebra

[Remiddi, Vermaseren]

• coproduct structure

• Mathematica implementation [Maitre]

dt

1 + t
= d log(1 + t)

e.g. 

• weight: number of integrations

H1,�1(x) =

Z
x

0

dx1

1� x1

Z
x1

0

dx2

1 + x2

• At one loop, only logarithm and dilogarithm needed

log z =

Z z

1

dt

t
Li2(z) =

Z z

0

dt1
t1

Z t1

0

dt2
1� t2

- what functions will appear at higher loops?



Feynman integrals as iterated integrals (2)
• Natural generalization: multiple polylogarithms

allow kernels w = d log(t� a)

Ga1,...an(z) =

Z z

0

dt

t� a1
Ga2,...,an(t)

• Chen iterated integralsZ

C
!1!2 . . .!n C : [0, 1] �! M

Alphabet: set of differential forms !i = d log↵i

(space of kinematical variables)

numerical evaluation: GINAC

more flexible than multiple polylogarithms!

[Vollinga, Weinzierl]

[also called hyperlogarithms; 
Goncharov polylogarithms]

integrals we discuss will be monodromy invariant on M \ S
S (set of singularities)

• Uniform weight functions (pure functions):
-linear combinations of functions of the same weightQ



d-log representations
• Can we make it manifest when integrals evaluate to pure functions?

[Lipstein, Mason, 2013]

[Arkani-Hamed, Bourjaily, Cachzo,
Goncharov, Postnikov, Trnka, 2012]

[Caron-Huot, talk at Trento, 2012]

very suggestive! New ways of performing loop integrations?

• use cuts of integrals as guiding principle for finding convenient integral 
basis

This is more than mere amusement. It immediately tells us that with an appro-
priate choice of variables representing the BCFW-shifts, the one-loop amplitude can
be represented in a remarkably simple form:
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Of course, this does not look anything like the more familiar expression, [81],
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In this form, it is not at all obvious that there is any change of variables that reduces
the integrand to the “dlog”-form of (2.33). However, following the rule for identifying
o↵-shell loop momenta in terms of on-shell data, (2.27), we may easily identify the
map which takes us from the ` of (2.34) to the ↵

i

of (2.33):
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where `⇤ is either of the two points null separated from all four external momenta.
This expression will be derived in detail in section 16.3.

As we will see, the existence of this “dlog” representation for loop integrands is a
completely general feature of all amplitudes at all loop-orders. But the possibility of
such a form even existing was never anticipated from the more traditional formula-
tions of field theory. Indeed, even for the simple example of the four-particle one-loop
amplitude, the existence of a change of variables converting d4` to four dlog’s went
unnoticed for decades. We will see that these “dlog”-forms follow directly from the
on-shell diagram description of scattering amplitudes generated by the BCFW recur-
sion relations, (2.26). Beyond their elegance, these dlog-forms suggest a completely
new way of carrying out loop integrations, and more directly expose an underlying,
“motivic” structure of the final results which will be a theme pursued in a later, more
extensive work.

The equivalence of on-shell diagrams related by mergers and square-moves clearly
represents a major simplification in the structure on-shell diagrams; but these alone
cannot reduce the seemingly infinite complexities of graphs with arbitrary numbers
of ‘loops’ (faces) as neither of these operations a↵ect the number of faces of a graph.
However, using mergers and square-moves, it may be possible to represent an on-shell
diagram in a way that exposes a “bubble” on an internal line. As one might expect,
there is a sense in which such diagrams can be reduced by eliminating bubbles:
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[JMH, PRL 110 (2013) 25]

Cuts and integrated integrands

• integrals with simple cuts are expected to integrate to uniform 
weight functions 

idea: any cut that completely localizes the integral should 
give just a rational number



Strategy for computing Feynman integrals
using differential equations

 (3) many classes of Feynman integrals 
evaluate to iterated integrals

 (2) Basis integrals satisfy coupled 
first-order differential equations

• Useful facts:

• Idea: choose basis such that the differential equations are simple,
and such that (3) is made obvious

 (1) For a given problem, one can choose 
a finite basis of Feynman integrals



Key points of the method [JMH, PRL 110 (2013) 25]

• expansion to any order in     is linear algebra
answer: multiple polylogarithms of uniform weight (‘transcendentality’)

✏

D = 4� 2✏Example: one dimensionless variable     ;              x

• elegant description: Feynman integrals specified by:
      (1) set of ‘letters’ (related to singularities      )
      (2) set of constant matrices 

xk

Ak

~f• differential equations for master integrals

• crucial: choose convenient basis (systematic procedure)
          makes solution trivial to obtain�!

• asymptotic behavior ~

f(x; ✏) ⇠ (x� xk)
✏Ak

~

f0(✏)

• natural extension to multi-variable case

@

x

~

f(x; ✏) = ✏

X

k

A

k

x� x

k

~

f(x; ✏)



Multi-variable case and the alphabet
• Natural generalization to multi-variable case

d

~

f(~x; ✏) = ✏ d

"
X

k

Ak log↵k(~x)

#
~

f(~x; ✏)

constant matrices letters (alphabet)

4-point on-shell ↵ = {x, 1 + x}
two-variable example (from 
1-loop Bhabha scattering):

↵ = {x , 1± x , y , 1± y , x+ y , 1 + xy}

• Matrices and letters determine solution

• Immediate to solve in terms of Chen iterated integrals

• Examples of alphabets:

more complicated examples later



Important points differential equations

• Uniform weight basis can be found systematically using cuts
(related to d-log representations)

• DE provide information about integrals in compact form
(alphabet, matrices)

• contain more information than epsilon expansion: exact limits

• boundary conditions often for free (e.g. finiteness in certain limits)

• Chen iterated integrals give most compact form of answer

• To given weight, answer can be rewritten in terms of minimal 
function basis

other ideas [Mastrolia et al.] [Caron-Huot, J.M.H.] [Gehrmann et al.]

[Arkani-Hamed et al.] [J.M.H.]

application: bootstrap for single-scale integrals

[Goncharov]

[J.M.H., A.V. Smirnov, V.A.Smirnov]



3-loop HQET integrals

[Grozin, J.M.H.,Korchemsky, Marquard, to appear 2014] 

• 8 integral families, e.g.

• 71 master integrals

• alphabet ↵ = {x, 1 + x, 1� x}

cos� =

v1 · v2p
v

2
1

p
v

2
2

, x = e

i�

• application: QCD cusp anomalous dimension

physics motivation: 
infrared divergences of massive scattering amplitudes



Vector boson production integrals pp ! V V 0

[JMH, Melnikov, V. Smirnov, JHEP 1430 (2014)] 

[JMH, Caola, Melnikov, V. Smirnov, 1404.5590] • sample integral family

• parametrization

• variables S, T,M2
3 ,M

2
4

• alphabet

• physical region

• boundary condition computed at 

S

M

2
3

= (1 + x)(1 + xy) ,
T

M

2
3

= �xz ,

M

2
4

M

2
3

= x

2
y

0 < x , 0 < y < z < 1

↵ ={x, y, z, 1 + x, 1� y, 1� z, 1 + xy, z � y, 1 + y(1 + x)� z, xy + z,

1 + x(1 + y � z), 1 + xz, 1 + y � z, z + x(z � y) + xyz, z � y + yz + xyz}.

x ! 0 , y ! z ! 1



Massive integrals for light-by-light scattering

• full set of 2-loop master integrals

• alphabet

[Caron-Huot, J.M.H., 2014]

similar integrals in QCD, e.g. for finite top quark mass

(at 3 loops: all finite master integrals in D=4)

where

• efficient numerical representation for Chen iterated integrals
g37(2, 4) = 0.0764922717271986970254859257468 . . .

u = �4m2/s , v = �4m2/t ,

�u =
p
1 + u , �v =

p
1 + v , �uv =

p
1 + u+ v , � =

p
16 + 16u+ 8v + v2

3 loops and 3 scales!

m2, s, t• variables

↵ =
n

u, 1 + u, v, 1 + v, u+ v,
�u � 1

�u + 1
,
�v � 1

�v + 1
,
�uv � 1

�uv + 1
,
�uv � �u

�uv + �u
,
�uv � �v

�uv + �v
,

u2 � 4v, v2 � 4u,
2� 2�uv + u

2 + 2�uv + u
,
2� 2�uv + v

2 + 2�uv + v
,

1 + u+ v ,
4� v + �

4� v � �
,
4 + v + �

4 + v � �
,
(4�u + �)(4�u + �uv + �)

(4�u � �)(4�u + �uv � �)
,
(4�uv + �)(4�uv � �uvv + �)

(4�uv � �)(4�uv � �uvv � �)

o



Factory-line for master integrals
 Workflow (typical time)

integral 
reduction

choose canonical basis 
for differential equations

analyze 
alphabet

boundary condition
(analytic continuation)

✏ expansion

communicate results
arXiv:...

More efficient way to communicate results-
Online library for loop integrals?

1-3

1-2

0-2

1-5 0

30

different 
representations

1-5

key data: integral basis, 
matrices, letters Ak ,↵k



Thank you!



Extra slides



A word of caution: more exotic objects
• mathematicians like to consider single-scale Feynman integrals

• conjecture that certain periods only evaluate to
multiple zeta values (MZV) appear disproven by 

relevant e.g. in top quark physics Czakon et al.

Note: weight property generalizes weight n -> (n/2,n/2)

systematic and practical way for dealing with them
for practical applications?

• Elliptic functions

recent work Elliptic polylogairthms [Brown, Levin]

[Remiddi, Tancredi] [Adams, Bogner, Weinzierl][Bloch, Vanhove]

also appear in massless N=4 SYM [Caron-Huot, Larsen]

[Brown, Schnetz]

mixed Hodge theory

[Vanhove]

• Here: cases where Chen iterated integrals are sufficient



The alphabet and perfect bricks (1)
Can we parametrize variables such that alphabet is rational?

• Example: Higgs production

Note: this is a purely kinematical question. Independent of basis choice.

p
1� 4m2/s

�m

2
/s = x/(1� x)2

↵ = {x, 1� x, 1 + x} (to two loops)
choose

• Related to diophantine equations
e.g. find rational solutions to equations such as

1 + 4 a = b2

here we found a 1-parameter solution

a =
x

(1� x)2 b =
1 + x

1� x

Not essential, but nice feature.

encounter



The alphabet and perfect bricks (2)
Find a brick with sides    
and diagonals                integers

• Classic example: Euler brick problem

• Similar equations for particle kinematics [Caron-Huot JMH, 2014]

e.g encountered in 4-d light-by-light scattering 

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!

Need two-parameter solution to

Find such solutions systematically? Minimal polynomial order?

u = �4m2/s v = �4m2/t

e.g. 

p1

a2

p2

a3

p3

a4

p4

a1

(a)

p1

a2

p2

a3

p3

b4

p4

b1a1

b3

c

(b)

Figure 1. Families of massive one- and two-loop integrals for light-by-light scattering. Possible
irreducible numerator factors at two loops are not shown.

integrals that appear in massive form factor calculations. They were computed previously
(in a different basis) to some order in ✏ in ref. [18]. We confirm these results. Moreover, the
formulation we give can be trivially expanded to any order in ✏, where the result is given
by a homogeneous expression in terms of harmonic polylogarithms.

This paper is organized as follows. In section 2, we give definitions of the loop integrals
that appear in the paper. Then, in section 3, we briefly review the differential equations
method for loop integrals, and discuss simplifications in the four-dimensional limit. We
use the one-loop integrals as a pedagogical example. In section 4, we explain how to
systematically set up the differential equations directly in four dimensions, and present
an algorithm for putting the latter into a canonical block-triangular form. We give the
differential equations at two and three loops and discuss the iterative structure of the
analytic solution. In section 5, we discuss the analytic properties of the functions to three
loops and show that they satisfy a Mandelstam representation. We discuss checks of our
results in section 6. We conclude in section 7. There are three appendices. In appendix
A we apply the differential equation method to the set of two-loop master integrals in
D = 4�2✏ dimensions and compute them using the method of ref. [7]. Additional material
on our method for writing down identities and differential equations for four-dimensional
loop integrals can be found in appendix B. Appendix C contains expressions for the one-
and two-loop box integrals in terms of multiple polylogarithms. Appendix D contains the
differential equations up to three loops. We supply several ancillary electronic files together
with the arXiv submission of this paper.
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�u =
p
1 + u, �v =

p
1 + v, �uv =

p
1 + u+ v

�2
u + �2

v = �2
uv + 1

�u =
1� wz

w � z
, �v =

w + z

w � z
, �uv =

1 + wz

w � z
.

smallest solution (P. Halcke):

(a,b,c)=(44,117,240)

Perfect cuboid (add eq.                                          ): open problem in mathematics!

a2 + b2 =d2 ,

a2 + c2 =e2 ,

b2 + c2 =f2 .

a, b, c
d, e, f

a2 + b2 + c2 = g2



Goncharov weight four conjecture
• rewrite any multiple polylogarithm in terms of function basis

e.g. at weight 4 (important for NNLO computations)

[Goncharov]

• practical tool: ``symbol`` useful projections [Goncharov, Spradlin, Vergu, Volovich]

[Brown] [Goncharov] [Duhr, Gangl, Rhodes]

minimal set of integration kernels vs. minimal set of function arguments

diff. eqs. or other information can be used to fix this

lecture notes: [Vergu]
[Brown][Zhao]

{log(x) log(y) log(z) log(w), log(x) log(y)Li2(z),
Li2(x)Li2(y), log(x)Li3(y),Li4(x),Li2,2(x, y)}

e.g. project on                     part

e.g. project out all products

Li2,2(x, y)

• ``symbol`` = Chen iterated integral without boundary information

for set of arguments (to be found - symbol/coproduct provides guidance)



Equivalent representations
• version 1: Chen iterated integrals

• version 2: Goncharov polylogarithms

• version 3: minimal function basis

[most compact]

[flexible: analytic 
continuation, limits]

[arbitraryness;
usually long expressions;
good at low weight;
fast numerical evaluation]

[longer expressions;
requires rational 
alphabet;
GINAC numerical 
evaluation]

g6 =�G�1,0(w) +G0,�1(w)�G0,1(w) +G1,0(w) +H�1,0(z)�H0,�1(z)�H0,1(z)

+H1,0(z)�G0(w)H�1(z) +G�1(w)H0(z)�G1(w)H0(z)�G0(w)H1(z) .

g6 =

Z

�
d log

�u � 1

�u + 1

d log
�uv � �u

�uv + �u
+

Z

�
d log

�v � 1

�v + 1

d log

�uv � �v

�uv + �v
.

p1

a2

a1

p2

a3

p3

p4

c4

b3

d

b1 c1

e

c3

(a)

p1

b2

b1

p2

a2

a3

p3

p4

d

c3

b4

c4

f

e

(b)

Figure 2. Families of massive three-loop integrals for light-by-light scattering. Possible irreducible
numerator factors are not shown.

of indices associated with each loop variable. For example, a two-loop integral is DCI if
(a1 + a2 + a3 + a4 + c) = 4 and (b1 + b2 + b3 + b4 + c) = 4.

In the following, we will define all integrals in the Euclidean region s/m2 < 0, t/m2 < 0,
where all functions are real-valued. One then defines the functions elsewhere by analytic
continuation, using the Feynman prescription. This implies giving the kinematical variables
a small imaginary part, according to m2 ! m2 � i0, s ! s + i0, t ! t + i0.

Let us have a first look at these integrals, and take I1 as an example. It is given
analytically by (the form below is due to [20]),

I1 =

2

�uv

n

2 log

2

✓

�uv + �u

�uv + �v

◆

+ log

✓

�uv � �u

�uv + �u

◆

log

✓

�uv � �v

�uv + �v

◆

� ⇡2

2

+

X

i=1,2

h

2 Li2

✓

�i � 1

�uv + �i

◆

� 2 Li2

✓

��uv � �i

�i + 1

◆

� log

2

✓

�i + 1

�uv + �i

◆

io

. (2.6)

Here we introduced dimensionless variables2

u =

4m2

�s
, v =

4m2

�t
, (2.7)

and the following abbreviations,

�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u + v . (2.8)

The functions appearing in eq. (2.6) are examples of polylogarithms. For these and more
general classes of integral functions that we will discuss one can define a “symbol” [1, 2, 21].
Roughly speaking, the symbol contains information about the integration kernels leading

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [13].

– 5 –

[2 loops: 10 terms]

[2 loops: 2-3 pages]

[2 loops: several pages]

[easy to see DE, cuts]

g6 = ��uv/2I1

(if alphabet rational in at least one variable)

�u =
p
1 + u, �v =

p
1 + v, �uv =

p
1 + u+ v

[ideas for numerics: 
J.M.H., Caron-Huot]

• some examples from literature: [Duhr][Goncharov et al.] [Gehrmann et al.] ...



Iterative structure
for finite 

loop integrals
[Caron-Huot, J.M.H. (2014) 

4

3

2

1

0

�u � 1

�u + 1

�uv � �u

�uv + �u

g9 g8

g4 g5 g6 g7

g2 g3

g1

u

u + v

�uv � 1

�uv + 1

�u � 1

�u + 1

�uv � 1

�uv + 1

v

u + v

�uv � �u

�uv + �u

�uv � 1

�uv + 1

g10

�v � 1

�v + 1

�uv � �v

�uv + �v

�uv � �u

�uv + �u

1 + u

u

�u � 1

�u + 1

�u � 1

�u + 1

�v � 1

�v + 1

transcendental

weight

uv

(1 + u)(u + v)

Figure 4. Hierarchy of master integrals up to two loops. The integrals are classified according
to their (transcendental) weight, shown in the leftmost column. Each arrow corresponds to one
non-zero element of the derivative matrix A, cf. eq. (4.11). The fact that arrows only link integrals
in adjacent rows is the statement that the matrix is block triangular. The result for an integral
can immediately be written down by summing over all paths leading up from the tadpole integral
g1 = 1. Each path gives a contribution to an iterated integral, with the integration kernels being
specified by the ‘letters’ written next to the corresponding arrows. Solid and dashed lines denote
massive and massless propagators, respectively. Note that the pictures are intended to give an idea
of how the integrals look like, but omit details such as e.g. numerator factors.
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• block triangular matrix structure
(weight grading)

• algorithm for finding this form


